for a given R group, the Pt nuclei are about equally shielded despite the charge difference and the change in sulfur coordination number. The similar δ ¹⁹⁵Pt ranges of these two types of compounds (ca. -3100 to -3200 ppm) are more deshielded than that of [Pt(dien)(RSSR)]²⁺ complexes (ca. -3250 to -3320 ppm), which are in turn more deshielded than the range for [Pt-(dien)(RSR)²⁺ complexes (ca. -3351 to -3375 ppm). The δ ¹⁹⁵Pt shielding order RS⁻ < RSSR < RSR may reflect a decrease in the paramagnetic shielding term resulting from an increase in the ligand field splitting parameter ΔE^{30} A rationale for this order is not obvious, however. These data demonstrate that any of these classes of compounds can be identified in a mixture (provided the chemical shifts are not too near a boundary of the range for a given class). However, speciation of members within a class is

(30) Mason, J. Chem. Rev. 1987, 87, 1299.

Acknowledgment. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. W-7405-ENG-82. This work was supported, in part, by the Assistant Secretary for Fossil Energy through the Pittsburgh Energy Technology Center. Partial support through DOE Grant No. DE-FG2288PC88923 is also acknowledged.

- (31) Zhang, C.; Reddy, H. K.; Schlemper, E. O.; Schrauzer, G. N. Inorg. Chem. 1990, 29, 4100.
- Turley, P. C.; Haake, P. J. Am. Chem. Soc. 1967, 89, 4611. Abel, E. D.; Koe, J. R.; Hursthouse, M. B.; Mazid, M.; Mahon, M. F.;
- (33) Molloy, K. C. J. Chem. Soc., Dalton Trans. 1990, 1697.
 - Contribution from the Department of Chemistry, University of Georgia, Athens, Georgia 30602

Cleavage of a Cyclotriphosphine Ring by Iron Carbonyls¹

Y. W. Li, M. G. Newton, N. K. Bhattacharyya, and R. B. King*

Received November 21, 1991

Reaction of tri-tert-butylcyclotriphosphine, t-Bu₃P₃, with $Fe(CO)_5$ in boiling toluene or with $Fe_3(CO)_{12}$ in boiling benzene gives yellow-brown crystalline t-Bu₃P₃Fe₂(CO)₆. An X-ray diffraction study of t-Bu₃P₃Fe₂(CO)₆ (orthorhombic, $P2_12_12_1$; a = 10.522(5) Å, b = 12.188 (4) Å, c = 19.807 (8) Å, Z = 4) indicates an Fe-Fe bond (Fe-Fe = 2.602 (3) Å) and opening of the cyclotriphosphine P₃ triangle to give a P₃ chain (P1-P3 = 2.226 (6) Å, P2-P3 = 2.209 (6) Å) with an essentially nonbonding P1...P2 distance of 2.499 (6) Å between the end phosphorus atoms of this P3 chain; the center atom of the P3 chain is trivalent and not bonded directly to any iron atoms. Reaction of t-Bu₃P₃ with Fe₂(CO)₉ at room temperature gives not only this binuclear complex t-Bu₃P₃Fe₂(CO)₆ but also a trinuclear complex t-Bu₃P₃[Fe(CO)₄]Fe₂(CO)₆. X-ray diffraction of this trinuclear complex (monoclinic, $P2_1/n$; a = 9.180 (5) Å, b = 16.923 (7) Å, c = 19.186 (9) Å, $\beta = 93.27$ (4)^{\circ}, Z = 4) indicates a structure similar to that of the binuclear complex t-Bu₃P₃Fe₂(CO)₆ but with an Fe(CO)₄ group bonded to the center phosphorus atom of the P₃ chain. Reaction of t-Bu₃P₃Fe₂(CO)₆ with hydrogen peroxide in ethanol and with sulfur in boiling toluene gives the corresponding oxide t-Bu₃P₃OFe₂(CO)₆ and sulfide t-Bu₃P₃SFe₂(CO)₆, respectively.

Introduction

In recent years the reaction of $Na_2Fe(CO)_4$ with *i*-Pr₂NPCl₂ has been found to give as the major product the phosphorusbridging carbonyl derivative (*i*-Pr₂NP)₂COFe₂(CO)₆ (I) in diethyl ether solution but the triphosphine derivative $(i-Pr_2NP)_3Fe_2(CO)_6$ (II; $\mathbf{R} = i - Pr_2 \mathbf{N}$) in tetrahydrofuran solution.² The formation of II ($\mathbf{R} = i \cdot \mathbf{Pr}_2 \mathbf{N}$) from the Na₂Fe(CO)₄/*i*-Pr₂NPCl₂ reaction is of interest because of the formation of a chain of three phosphorus atoms from the reductive coupling of three *i*-Pr₂NP units upon reaction of i-Pr₂NPCl₂ with the Na₂Fe(CO)₄. A related reductive coupling reaction occurs upon treatment of (CxPCl₂)- $Fe(CO)_4$ (Cx = cyclohexyl) with Na₂Cr₂(CO)₁₀ to give the derivative $Cx_3P_3[Cr(CO)_5]Fe_2(CO)_6$ (III),³ in which not only the outer phosphorus atoms of the triphosphine chain are bonded to iron atoms but also the central phosphorus atom of the triphosphine chain is coordinated to a $Cr(CO)_5$ group. This compound is closely related to the product $(i-Pr_2NP)_2P(Cl)[Cr (CO)_5$]Fe₂(CO)₆ (IV) obtained by complexation of the central phosphorus atom in $(i-Pr_2NP)_2P(Cl)Fe_2(CO)_6$ (V) by reaction with (thf)Cr(CO)₅.⁴ Other compounds containing a triphosphine

King, R. B.; Wu, F.-J.; Holt, E. M. J. Am. Chem. Soc. 1987, 109, 7764. (2) (3) Borm, J.; Knoll, K.; Zsolnai, L.; Huttner, G. Z. Naturforsch. 1986, 41b, 532.

hexacarbonyldiiron P_3Fe_2 unit have been obtained by the following methods:

⁽¹⁾ Complexes of Trivalent Phosphorus Derivatives. 19. For part 18 of this series see King, R. B.; Cloyd, J. C., Jr.; Norins, M. E.; Reimann, R. H. J. Coord. Chem. 1977, 7, 23.

Table I. ³¹P NMR Spectra and Infrared ν (CO) Frequencies of Triphosphine Iron Carbonyl Derivatives

			³¹ P NMR, δ^a				
	compound	middle P	end P	J(P-P) ^b	infrared $\nu(CO)$ frequencies, ^c cm ⁻¹		
	$(i-\Pr_2NP)_3Fe_2(CO)_6$	292.2 t	170.3 d	264	2048 s, 2008 s, 1986 s, 1958 s, 1947 m	Î	
	$t-Bu_1P_1Fe_2(CO)_6$	249.0 t	99.9 d	176	2050 s, 2012 s, 1982 s, 1971 s, 1960 s, 1932 w		
	$t-Bu_1P_1[Fe(CO)_4]Fe_2(CO)_6$	296.4 t	136.9 d	142	2063 m, 2045 s, 2016 s, 1988 s, 1967 s, 1956 s		
	$t-Bu_1P_1OFe_2(CO)_6$	170.2 t	179.4 d	184	2058 m, 2025 s, 1987 s, 1968 w		
	$t-Bu_3P_3SFe_2(CO)_6$	215.9 t	177.8 d	182	2056 s, 2023 s, 1987 s, 1967 s		
	$t-\mathbf{Bu}_3\mathbf{P}_3$	-109.6 t	-70.6 d	202			

^aThese ³¹P NMR spectra were run in CDCl₃ solution: d = doublet; t = triplet. ^bThese coupling constants are given in hertz. ^cThese infrared $\nu(CO)$ frequencies were measured in hexane solution.

Table II. Proton and ¹³C NMR Spectra of Triphosphine Iron Carbonyls

		carbon-13 NMR, ^{<i>a,b</i>} δ					
compound	proton NMR, ^a δ	metal CO groups	quaternary C	methyl			
$t-Bu_3P_3Fe_2(CO)_6$	1.43 d (11), 1.29 t (9)	213.3 d (12), 212.7 s	39.6 s, 30.6 s	30.4 s, 30.1 s			
$t-Bu_3P_3[Fe(CO)_4]Fe_2(CO)_6$	1.60 s, 1.41 s	217.0 s, 213.1 s, 212.2 s	42.2 s, 30.1 s	32.2 s, 31.7 s			
$t-Bu_3P_3OFe_2(CO)_6$	1. 46 s	211.9 s	41.7 s	31.7 s, 27.9 s			
$t-Bu_3P_3SFe_2(CO)_6$	1.62 d (17), 1.51 dd (10, 8)	212.3 d (6), 211.8 d (5)	51.0 s, 44.4 s	31.9 s, 29.6 s			

^aAll of the proton NMR spectra were obtained in CDCl₃ solution: s = singlet, d = doublet, dd = doublet, t = triplet. ^bAll of the carbon-13 NMR spectra were obtained in CDCl₃ solution with added Cr(acac)₃.

(1) The triphenyltriphosphine derivative $Ph_3P_3Fe_2(CO)_6$ (II: R = phenyl) has been obtained by the following reaction sequence:⁵

$$(PhPH)_2Fe_2(CO)_6 + 2MeLi \rightarrow (PhPLi)_2Fe_2(CO)_6 + 2CH_4$$
(1a)

$$(PhPLi)_2Fe_2(CO)_6 + PhPCl_2 \rightarrow Ph_3P_3Fe_2(CO)_6 + 2LiCl$$
(1b)

(2) Pyrolysis of the $\eta^1 \eta^2$ -diiron diphosphene complex (PhP= PPh)Fe₂(CO)₆ in boiling benzene gives a 70% yield of a yellow dimer of stoichiometry Ph₄P₄Fe₄(CO)₁₂ shown by X-ray diffraction to have structure VI, i.e., Ph₂P₃[Fe₂(CO)₆(μ_2 -PPh₂)]Fe₂(CO)₆ with a triphosphine chain and an "isolated" Ph₂P group formed by migration of a phenyl group from one phosphorus atom to another.⁶

Another possible approach to the synthesis of triphosphine hexacarbonyldiiron derivatives of the type $R_3P_3Fe_2(CO)_6$ uses the cleavage of a single phosphorus-phosphorus bond in a cyclotriphosphine ring with iron carbonyls. This paper reports the first example of a reaction of this type, namely cleavage of the P_3 ring in the readily available⁷ tri-*tert*-butylcyclotriphosphine with iron carbonyls to give t-Bu₃ $P_3Fe_2(CO)_6$ shown by X-ray diffraction to have the expected structure II ($\mathbf{R} = tert$ -butyl). In addition compounds are described in which the lone pair of the central phosphorus atom in t-Bu₃ $P_3Fe_2(CO)_6$ has been complexed with an $Fe(CO)_4$ group or oxidized to the corresponding phosphine oxide or phosphine sulfide.

Experimental Section

Microanalyses were performed by the Atlantic Microanalytical Laboratory, Norcross (Atlanta), GA. Infrared spectra (Table I) were run in the 2200–1600 cm⁻¹ metal-carbonyl region in hexane solution and recorded on a Perkin-Elmer Model 1600 Fourier transform infrared spectrometer calibrated against polystyrene film. Proton (Table II), carbon-13 (Table II), and phosphorus-31 (Table I) NMR spectra were run on a Bruker 300-MHz spectrometer with internal tetramethylsilane, internal tetramethylsilane, and external 85% phosphoric acid, respectively, as references. Carbon-13 and phosphorus-31 NMR spectra were normally run with proton decoupling. All chemical shifts (δ) are given downfield from the reference. The relaxation reagent Cr(acac)₃⁸ was added to the carbon-13 NMR samples in order to obtain better spectra in the metal carbonyl region. Melting and decomposition points were

Table III. Reactions of t-Bu₃P₃ with Fe₂(CO)₉ under Different Conditions^{*a*}

conditions	Fe ₂ /Fe ₃ mole ratio ^b
boiling hexane	7.7
toluene at room temperature	2.6
diethyl ether at room temperature	2.3
tetrahydrofuran at room temperature	6.5

^a All of these reactions were carried out using a 2:1 mole ratio of $Fe_2(CO)_9$ to $t-Bu_3P_3$. ^b This refers to the $t-Bu_3P_3Fe_2(CO)_6/t-Bu_3P_3$. [Fe(CO)₄]Fe₂(CO)₆ mole ratio determined by the mean of the relative intensities of the triplet and the doublet ³¹P NMR peaks.

taken in capillaries and are uncorrected.

Commercial $Fe(CO)_5$ was converted to $Fe_2(CO)_9^9$ and $Fe_3(CO)_{12}^{10}$ by the cited published procedures. The cyclotriphosphine *t*-Bu₃P₃ was prepared from *t*-BuCl, Mg, and PCl₃ through *t*-BuPCl₂ using published procedures.^{11,12}

Before use, all solvents were distilled under dry nitrogen over appropriate drying agents (sodium benzophenone ketyl or metal hydrides except for chlorinated solvents). Air-sensitive organometallic and organophosphorus compounds were handled in a dry nitrogen atmosphere.

Reactions of t-Bu₃P₃ with Iron Carbonyls. (a) Iron Pentacarbonyl. A solution of 4.65 g (17.6 mmol) of t-Bu₃P₃ and 7.1 mL (52.8 mmol) of Fe(CO)₅ in 500 mL of toluene was boiled under reflux for 24 h. Solvent and other volatile materials were removed under vacuum. The residue was extracted with 200 mL of hexane. Concentrating and cooling the extract gave some black-yellow crystals which were washed with three 20-mL portions of hexane and dried to give 0.90 g (9.4% yield) of brown-yellow, slightly air-sensitive crystalline t-Bu₃P₃Fe₂(CO)₆ (II; R = t-trutyl), 200-201 °C (dcc). Anal. Calcd for C₁₈H₂₇Fe₂O₆P₃: C, 39.7; H, 5.0. Found: C, 39.7; H, 4.9.

(b) Diiron Enneacarbonyl. A mixture of 7.83 g (29.6 mmol) of t-Bu₃P₃ and 21.6 g (59 mmol) of Fe₂(CO)₉ in 500 mL of hexane was stirred for 24 h at room temperature. Concentration and cooling in a -10 °C freezer for 1 week gave 1.19 g (5.6% yield) of brown-yellow crystalline t-Bu₃P₃[Fe(CO)₄]Fe₂(CO)₆, 140-143 °C (dec). Anal. Calcd for C₂₂H₂₇Fe₃O₁₀P₃: C, 37.1; H, 3.8. Found: C, 36.9; H, 4.2. Chromatography of the filtrate from the reaction between Fe₂(CO)₉ and t-Bu₃P₃ yielded an amorphous brown solid exhibiting ³¹P NMR resonances at δ -19.8 (apparent quintet, separations ~60 Hz) and δ -79.4 (double triplet, J_D = ~260 Hz; J_T = ~60 Hz); suitable single crystals of this product could not be obtained.

Reactions of t-Bu₃P₃ with Fe₂(CO)₉ were carried out under a variety of conditions and the resulting mixtures were analyzed for the relative amounts of t-Bu₃P₃Fe₂(CO)₆ and t-Bu₃P₃[Fe(CO)₄]Fe₂(CO)₆ by ³¹P NMR; the results are tabulated in Table III.

(10) McFarlane, W.; Wilkinson, G. Inorg. Synth. 1966, 8, 181.

⁽⁴⁾ King, R. B.; Wu, F.-J.; Holt, E. M. Inorg. Chem. 1988, 27, 1241.

⁽⁵⁾ Bartsch, R.; Hietkamp, S.; Morton, S.; Stelzer, O. J. Organomet. Chem. 1981, 222, 263.

⁽⁶⁾ Attali, S.; Dahan, F.; Mathieu, R.; Caminade, A.-M.; Majoral, J.-P. J. Am. Chem. Soc. 1988, 110, 1990.

⁽⁷⁾ Baudler, M.; Gruner, C. Z. Naturforsch. 1976, B31, 1311.

⁽⁸⁾ Gansow, O. A.; Burke, A. R.; Vernon, W. D. J. Am. Chem. Soc. 1972, 94, 2550.

⁽⁹⁾ Braye, E. H.; Hübel, W. Inorg. Synth. 1966, 8, 178.

⁽¹¹⁾ Fild, M.; Stelzer, O.; Schmutzler, R. Inorg. Synth. 1973, 14, 4.

⁽¹²⁾ Baudler, M.; Glinka, K. Inorg. Synth. 1989, 25, 1.

Cleavage of a Cyclotriphosphine Ring

Table IV. Crystal Data for t-Bu₃P₃Fe₂(CO)₆ and t-Bu₃P₃[Fe(CO)₄]Fe₂(CO)₆

		$t-Bu_3P_3$
	$t-Bu_3P_3Fe_2(CO)_6$	$[Fe(CO)_4]Fe_2(CO)_6$
formula	C ₁₈ H ₂₇ Fe ₂ O ₆ P ₃	$C_{22}H_{27}Fe_{3}O_{10}P_{3}$
mol wt	544.03	683.91
cryst dimensions, mm	$0.20 \times 0.25 \times 0.50$	$0.075 \times 0.225 \times 0.25$
cryst syst	orthorhombic	monoclinic
space group	$P2_12_12_1$	$P2_1/n$
a, Å	10.522 (5)	9.180 (5)
b, Å	12.188 (4)	16.923 (7)
c, Å	19.807 (8)	19.186 (9)
β , deg	90	93.27 (4)
V, Å ³	2540 (1)	2975 (7)
F(000)	1120	1392
μ (Cu K α), cm ⁻¹	112.9	135.8
transmission factors, %	67.21 to 99.45	33.78 to 99.51
$D_{\rm calcd}$, g cm ⁻¹	1.423	1.526
Z	4	4
no. of total reflens	2932	6330
no. of obsd reflens	1471	2604
octants colled	+h, +k, +l	$+h, +k, \pm l$
max 2θ , deg	150.0	150.0
R ^a	0.057	0.062
R_{w}^{a}	0.076	0.080

 ${}^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; R_{w} = [\sum w_{i}(||F_{o_{i}}| - |F_{c_{i}}||)^{2} / \sum w_{i}|F_{o_{i}}|^{2}]^{1/2}.$

(c) Triiron Dodecacarbonyl. A mixture of 3.6 g (13.6 mmol) of t-Bu₃P₃ and 6.9 g (13.7 mmol) of Fe₃(CO)₁₂ in 150 mL of benzene was boiled under reflux for 24 h. After removal of solvent under vacuum the residue was extracted with 100 mL of hexane. Cooling the hexane extract in the refrigerator for 10 h gave 1.58 g (21% yield) of brown crystalline t-Bu₃P₃Fe₂(CO)₆.

Reactions of t-Bu₃P₃Fe₂(CO)₆. (a) Oxidation with Hydrogen Peroxide. A solution of 0.77 g (1.4 mmol) of t-Bu₃P₃Fe₂(CO)₆ and 0.3 mL (2.8 mmol) of 30% hydrogen peroxide in 100 mL of ethanol and 5 mL of hexane was stirred for 30 min at 0 °C and then 3.5 h at room temperature. Solvents and excess H₂O₂ were removed under vacuum. The residue was extracted with 100 mL of a 6:1 hexane/CH₂Cl₂ mixture. Concentration of the extract at 20 mm gave 0.83 g (99% yield) of yellow crystalline air-stable t-Bu₃P₃OFe₂(CO)₆, 220–223 °C (dec). Anal. Calcd for C₁₈H₂₇Fe₂O₇P₃: C, 38.6; H, 4.9. Found: C, 38.4; H, 4.9.

(b) Reaction with Sulfur. A mixture of 5.3 g (9.7 mmol) of t-Bu₃P₃Fe₂(CO)₆, 0.4 g (1.6 mmol) of S₈, and 500 mL of toluene was boiled under reflux for 24 h. Removal of solvent from the filtered solution followed by crystallization of the residue from a 10:1 hexane/CH₂Cl₂ mixture gave 1.18 g (21% yield) of yellow t-Bu₃P₃SFe₂(CO)₆, 190-191 °C (dec). Anal. Calcd for C₁₈H₂₇Fe₂O₆P₃S: C, 37.5; H, 4.7. Found: C, 37.6; H, 4.7.

(c) Reaction with $Fe_2(CO)_9$. A mixture of 0.37 g (0.68 mmol) of t-Bu₃P₃Fe₂(CO)₆ and 0.50 g (1.36 mmol) of Fe₂(CO)₉ in 80 mL of hexane was stirred at room temperature for 24 h. Phosphorus-31 NMR of the reaction mixture indicated the presence of a ~1:1 mixture of t-Bu₃P₃Fe[Fe(CO)₄]Fe₂(CO)₆ and unchanged t-Bu₃P₃Fe₂(CO)₆.

(d) Reaction with (thf)Cr(CO)₅. An orange tetrahydrofuran solution of (thf)Cr(CO)₅ was generated by photolysis of 1.1 g (5 mmol) of Cr-(CO)₆ in 450 mL of tetrahydrofuran for 5 h. After 2.27 g (4.17 mmol) of t-Bu₃P₃Fe₂(CO)₆ was added to this solution, the reaction mixture was stirred at room temperature for 10 h. Removal of solvent and Cr(CO)₆ under vacuum followed by extraction with a mixture of hexane (300 mL) and dichloromethane (10 mL), evaporation of the extract, removal of more Cr(CO)₆ at 75 °C/0.03 mm, and crystallization from hexane resulted in the isolation of unchanged t-Bu₃P₃Fe₂(CO)₆, identified by phosphorus-31 NMR.

Structure Determinations of t-Bu₃P₃Fe₂(CO)₆ and t-Bu₃P₃[Fe₋(CO)₄]Fe₂(CO)₆ (Table IV). Orange needle crystals of t-Bu₃P₃Fe₂(CO)₆ and t-Bu₃P₃[Fe(CO)₄]Fe₂(CO)₆ from hexane were fixed in a random orientation on a glass fiber and mounted on an Enraf-Nonius CAD-4 diffractometer equipped with a graphite crystal monochromator and Cu K_{α} irradiation (1.541 84 Å). Cell dimensions were determined by least-squares refinement of the angular positions of 25 independent reflections for each sample in the $15-25^{\circ} \theta$ range during the normal alignment procedure. Intensity data were collected at ambient temperature over a θ range of 2–75° using the ω -2 θ technique with a variable scan width and scan range. A semiempirical absorption correction¹³ was

(13) North, A. C. T.; Phillips, D. C.; Mathews, F. S. Acta Crystallogr. 1968, A24, 351.

Figure 1. ORTEP diagram of t-Bu₃P₃Fe₂(CO)₆. The nine methyl groups are omitted for clarity.

Figure 2. ORTEP diagram of $t-Bu_3P_3[Fe(CO)_4]Fe_2(CO)_6$. The nine methyl groups are omitted for clarity.

Table	V.	Selected	Bond	Distances	(Å)) for	t-Bu ₃ H	$P_3Fe_2(CO)_6$	
-------	----	----------	------	-----------	-----	-------	---------------------	-----------------	--

_				
	Fe1-Fe2	2.602 (3)	Fe2-P2	2.243 (5)
	Fe1-P1	2.229 (4)	Fe2–C4	1.71 (2)
	Fe1-P2	2.235 (5)	Fe2-C5	1.76 (2)
	Fe1-C1	1.74 (2)	Fe2-C6	1.76 (1)
	Fe1-C2	1.72 (2)	P1-P2	2.499 (6)
	Fe1-C3	1.77 (1)	P1-P3	2.226 (6)
	Fe2-P1	2.234 (4)	P2-P3	2.209 (6)

applied to each data set. Table IV provides information relevant to the crystal cells and data collections.

The structural analyses were performed on a VAX 6210 using the MolEN structure analysis program system.¹⁴ The structures were solved using SIR88 with eight symbols.¹⁵ All non-hydrogen atoms were located in several difference Fourier maps and then refined by full-matrix least-squares, first isotropically, then anisotropically. Hydrogens were not included in the analysis of the structures. The final unweighted R values were 0.057 for t-Bu₃P₃Fe₂(CO)₆ and 0.062 for t-Bu₃P₃[Fe-(CO)₄]Fe₂(CO)₆.

The structures of t-Bu₃P₃Fe₂(CO)₆ and t-Bu₃P₃[Fe(CO)₄]Fe₂(CO)₆ are depicted in Figures 1 and 2, respectively. Selected bond distances and angles of t-Bu₃P₃Fe₂(CO)₆ and t-Bu₃P₃[Fe(CO)₄]Fe₂(CO)₆ are depicted in Tables V-VIII.

Results

Reaction of $t-Bu_3P_3$ with either Fe(CO)₅ in boiling toluene or Fe₃(CO)₁₂ in boiling benzene gave a brown-yellow crystalline

⁽¹⁴⁾ MolEN, An interactive Structure Solution Procedure. Enraf-Nonius: Delft, The Netherlands.

⁽¹⁵⁾ Burla, M. C.; Camalli, M.; Cascarano, G.; Giacovazzo, G.; Polidori, G.; Spagna, R.; Viterbo, D. J. Appl. Crystallogr. 1989, 22, 389.

Table VI. Selected Bond Angles (deg) for t-Bu₃P₃Fe₂(CO)₆

Fe2-Fe1-P1	54.4 (1)	Fe1-P1-Fe2	71.3 (1)
Fe2-Fe1-P2	54.6 (1)	Fe1-P1-P2	56.1 (1)
Fe2-Fe1-C1	151.2 (6)	Fe1-P1-P3	93.3 (2)
Fe2-Fe1-C2	97.6 (8)	Fe1-P1-C21	128.8 (6)
Fe2-Fe1-C3	103.8 (5)	Fe2-P1-P2	56.2 (1)
P1-Fe1-P2	68.1 (2)	Fe2-P1-P3	105.1 (2)
P1-Fe1-C1	100.5 (6)	Fe2-P1-C21	133.0 (6)
P1-Fe1-C2	99.1 (7)	P2-P1-P3	55.4 (2)
P1-Fe1-C3	158.0 (5)	P2-P1-C21	169.2 (5)
P2-Fe1-C1	105.9 (6)	P3-P1-C21	113.8 (5)
P2-Fe1-C2	152.8 (8)	Fe1-P2-Fe2	71.0 (1)
P1-Fe1-C3	97.5 (5)	Fe1-P2-P1	55.8 (1)
C1-Fe1-C2	101 (1)	Fe1-P2-P3	93.7 (2)
C1-Fe1-C3	99.5 (8)	Fe1-P2-C11	129.2 (5)
C2-Fe1-C3	86.2 (8)	Fe2-P2-P1	55.9 (1)
Fe1-Fe2-P1	54.2 (1)	Fe2-P2-P3	105.4 (2)
Fe1-Fe2-P2	54.3 (1)	Fe2-P2-C11	130.8 (5)
Fe1-Fe2-C4	156.0 (6)	P1-P2-P3	56.0 (2)
Fe1-Fe2-C5	100.3 (6)	P1-P2-C11	171.4 (5)
Fe1-Fe2-C6	97.6 (5)	P3-P2-C11	115.4 (5)
P1-Fe2-P2	67.9 (2)	P1-P3-P2	68.6 (2)
P1-Fe2-C4	108.6 (6)	P1-P3-C31	116.1 (7)
P1-Fe2-C5	95.6 (6)	P2-P3-C31	113.7 (6)
P1-Fe2-C6	151.5 (5)	Fe1-C1-O1	177 (2)
P2-Fe2-C4	105.6 (6)	Fe1-C2-O2	179 (2)
P2-Fe2-C5	154.3 (6)	Fe1-C3-O3	178 (1)
P2-Fe1-C6	93.2 (5)	Fe2-C4-O4	175 (1)
C4-Fe2-C5	97.9 (8)	Fe2C5O5	177 (1)
C4-Fe2-C6	96.6 (8)	Fe2-C6-O6	178 (1)
C5-Fe2-C6	94.1 (8)		

Table VII. Selected Bond Distances (Å) for $t-Bu_3P_3[Fe(CO)_4]Fe_2(CO)_6$

Fe1-Fe2	2.581 (2)	Fe2-C6	1.78 (1)
Fe1-P1	2.252 (3)	Fe3-P3	2.281 (3)
Fe1-P2	2.263 (3)	Fe3-C7	1.75 (1)
Fe1-C1	1.77 (1)	Fe3C8	1.83 (1)
Fe1-C2	1.72 (1)	Fe3-C9	1.79 (1)
Fe1-C3	1.77 (1)	Fe3-C10	1.80 (1)
Fe2-P1	2.248 (3)	P1-P2	2.527 (3)
Fe2-P2	2.251 (3)	P1-P3	2.250 (4)
Fe2–C4	1.77 (1)	P2-P3	2.242 (4)
Fe2-C5	1.76 (1)		

essentially air-stable product $t-Bu_3P_3Fe_2(CO)_6$ as the only organophosphorus iron carbonyl derivative detected by ³¹P NMR. The yield of this product was significantly better under the milder conditions used for the $Fe_3(CO)_{12}$ reaction. The structure (Figure 1) of t-Bu₃P₃Fe₂(CO)₆ was shown by X-ray diffraction to be the expected VII (\equiv II: R = tert-butyl) in which one of the three P-P bonds in the cyclotriphosphine ring of $t-Bu_3P_3$ has been cleaved according to the following general scheme:

VII = II: R = tert-buty

Important features (Table V) of the structure of VII include the Fe-Fe bond (2.602 Å), the P-P bonding distances of 2.226 (8) and 2.209 (6) Å between P1 and P3 and between P2 and P3, respectively, and the P-P distance of 2.499 (6) Å between P1 and P2. This P1-P2 distance is about 0.3 Å longer than a P-P single bond distance and to a first approximation can be interpreted as a nonbonding P-P distance. However, nonparametrized molecular orbital calculations by Teo, Hall, Fenske, and Dahl¹⁶ on related binuclear iron carbonyl complexes suggest a small amount of residual P...P attractive interaction in such structures. The essentially equilateral (60 \pm 1° angles) triangle geometry¹⁷ of the

starting cyclotriphosphine t-Bu₃P₃ is perturbed relatively little (i.e., to a triangle with angles of 56.56 (6)°, 68.19 (7)°, and 55.25 (6)° with no angles deviating by more than 8° from an equilateral triangle-see Table IX) upon cleavage of one of its P-P bonds by reaction with $Fe(CO)_5$ or $Fe_3(CO)_{12}$ to give VII. In addition the observed P-P bond cleavage upon reaction of t-Bu₃P₃ with the iron carbonyls contrasts with the lack of P-P bond cleavage in the reported complexation of t-Bu₃P₃ with a Cr(CO)₅ unit to form t-Bu₃P₃Cr(CO)₅ (VIII: R = t-Bu, M = Cr)^{18,19} or of i-Pr₃P₃ with a W(CO)₅ unit to form i-Pr₃P₃W(CO)₅ (VIII: R = i-Pr, M = W²⁰ in which all three P-P bonds of the cyclotriphosphine ring are retained and the P-P-P angles are within $\pm 1^{\circ}$ of the 60° values for an equilateral triangle (Table IX). The geometry of the P₃ unit in t-Bu₃P₃Fe₂(CO)₆ (VII) is also similar to that of the P₃ units in the related compounds $(i-Pr_2NP)_3Fe_2(CO)_6$ (II: R = $i-Pr_2N)^2$ $(i-Pr_2NP)_2P(Cl)[Cr(CO)_5]Fe_2(CO)_6$ (IV),⁴ $(i-Pr_2NP)_2P(Cl)[Cr(CO)_5]Fe_2(CO)_5$ (IV),⁴ (I $Pr_2NP_2P[Mn(CO)_5]Fe_2(CO)_6,^4$ and $Ph_2P_3[Fe_2(CO)_6(\mu_2 PPh_2$]Fe₂(CO)₆ (VI)⁶ listed in Table IX.

The spectroscopic properties of t-Bu₃P₃Fe₂(CO)₆ are in accord with structure VII. Thus the infrared spectrum (Table I) shows only terminal carbonyl frequencies and is very similar to that of the related compound $(i-Pr_2NP)_3Fe_2(CO)_6$ (II: $R = i-Pr_2N$). The phosphorus-31 NMR spectrum (Table I) shows the expected AX₂ pattern consisting of a doublet and a triplet with a $|^{1}J(P-P)|$ of 264 Hz. The proton and carbon-13 NMR spectra indicate the presence of two types of tert-butyl groups as required by structure VII.

The reaction of t-Bu₃P₃ with Fe₂(CO)₉ under milder conditions was found to be somewhat more complicated than the reactions of t-Bu₃P₃ with $Fe(CO)_5$ or $Fe_3(CO)_{12}$. Three organophosphorus iron carbonyl products were observed: (1) t-Bu₃P₃Fe₂(CO)₆ (VII); (2) an amorphous brown product which could not be characterized but which exhibited distinctive multiplet ³¹P resonances at δ -19 and δ -79; (3) t-Bu₃P₃[Fe(CO)₄]Fe₂(CO)₆ shown by X-ray diffraction to have structure IX (Figure 2). Structure IX is closely related to that of t-Bu₃P₃Fe₂(CO)₆ (VII) with an Fe(CO)₄ unit being bonded to the central phosphorus atom (P³) in VII. Thus the geometries of the t-Bu₃P₃Fe₂(CO)₆ units in VII and IX are very similar (Tables V-VIII). The mole ratio of t-Bu₃P₃Fe₂(CO)₆ to t-Bu₃P₃[Fe(CO)₄]Fe₂(CO)₆ formed in the reaction of t-Bu₃P₃ with $Fe_2(CO)_9$ (as determined by ³¹P NMR) depends significantly upon the reaction conditions (Table III); higher temperatures and/or more polar solvents (e.g., tetrahydrofuran relative to diethyl ether) favored formation of the diiron complex VII rather than the triiron complex IX. Also heating solid IX to ~ 180 °C led to significant decomposition resulting in loss of the Fe(CO)₄ group to give VII as indicated by the ³¹P NMR spectrum.

The isolation of IX from the reaction of t-Bu₃P₃ with Fe₂(CO)₉ indicates the activity of the lone pair on the central phosphorus atom (P³) in t-Bu₃P₃Fe₂(CO)₆ (VII) with the source of the Fe-(CO)₄ group being the well-known dissociation of Fe₂(CO)₉ under mild conditions to stable Fe(CO)₅ and a reactive Fe(CO)₄ fragment by the process

$$\operatorname{Fe}_2(\operatorname{CO})_9 \to \operatorname{Fe}(\operatorname{CO})_5 + \{\operatorname{Fe}(\operatorname{CO})_4\}$$
 (2)

⁽¹⁶⁾ Teo, B. K.; Hall, M. B.; Fenske, R. F.; Dahl, L. F. Inorg. Chem. 1975, 14. 3103.

⁽¹⁷⁾ Hahn, J.; Baudler, M.; Krüger, C.; Tsay, Y.-H. Z. Naturforsch. 1982, 376, 797.

Baudler, M.; Salzer, F.; Hahn, J. Z. Naturforsch. 1982, 37b, 1529. Tebbe, K.-F.; Fehêr, M. Z. Naturforsch. 1984, 39b, 37. (18)

⁽²⁰⁾ Tebbe, K.-F. Acta Crystallogr. 1984, C40, 1552.

Table VIII. Selected Bond Angles (deg) for t-Bu₃P₃[Fe(CO)₄]Fe₂(CO)₆

	*							
Fe2-Fe1-P1	54.93 (8)	Fe1-Fe2-C6	108.3 (4)	_	C9-Fe3-C10	87.5 (6)	P1-P2-C21	171.2 (4)
Fe2-Fe1-P2	54.91 (8)	P1-Fe2-P2	68.4 (1)		Fe1-P1-Fe2	70.00 (9)	P3-P2-C21	117.3 (3)
Fe2-Fe1-C1	152.9 (3)	P1-Fe2-C4	120.5 (3)		Fe1-P1-P2	56.16 (9)	Fe3-P3-P1	123.7 (1)
Fe2-Fe1-C2	112.6 (4)	P1-Fe2-C5	142.2 (4)		Fe1-P1-P3	95.8 (1)	Fe3-P3-P2	116.0 (1)
Fe2-Fe1-C3	85.3 (4)	P1-Fe2-C6	93.3 (4)		Fe1P1C11	123.2 (4)	Fe3-P3-C31	115.9 (3)
P1-Fe1-P2	68.1 (1)	P2-Fe2-C4	101.1 (4)		Fe2-P1-P2	55.87 (9)	P1-P3-P2	68.5 (1)
P1-Fe1-C1	97.9 (3)	P2-Fe2-C5	96.2 (4)		Fe2-P1-P3	104.1 (1)	P1-P3-C31	109.4 (3)
P1-Fe1-C2	164.4 (4)	P2-Fe2-C6	160.1 (4)		Fe2-P1-C11	131.2 (3)	P2-P3-C31	115.0 (3)
P1-Fe1-C3	97.6 (4)	C4-Fe2-C5	95.7 (5)		P2-P1-P3	55.6 (1)	Fe1-C1-O1	173 (1)
P2-Fe1-C1	119.3 (4)	C4-Fe2-C6	94.8 (5)		P2-P1-C11	118.9 (4)	Fe1C2O2	178 (1)
P2-Fe1-C2	97.3 (4)	C5-Fe2-C6	94.1 (6)		Fe1-P2-Fe2	69.8 (1)	Fe1-C3-O3	179 (1)
P2-Fe1-C3	139.3 (4)	P3-Fe3-C7	99.1 (4)		Fe1-P2-P1	55.76 (9)	Fe2C4O4	174 (1)
C1-Fe1-C2	94.1 (5)	P3-Fe3-C8	121.1 (4)		Fe1-P2-P3	95.7 (1)	Fe2C5O5	176 (1)
C1-Fe1-C3	99.8 (5)	P3-Fe3-C9	95.6 (3)		Fe1-P2-C21	132.8 (4)	Fe2C6O6	172 (1)
C2-Fe1-C3	90.1 (6)	P3-Fe3-C10	114.0 (5)		Fe2-P2-P1	55.77 (9)	Fe3C7O7	174 (1)
Fe1-Fe2-P1	55.07 (8)	C7-Fe3-C10	87.5 (6)		Fe2P2P3	104.3 (1)	Fe3C8O8	174 (1)
Fe1-Fe2-P2	55.33 (8)	C8-Fe3-C9	86.0 (5)		Fe2-P2-C21	125.9 (3)	Fe3C9O9	175.2 (9)
Fe1-Fe2-C4	156.4 (3)	C8-Fe3-C10	124.8 (6)		P1-P2-P3	55.9 (1)	Fe3-C10-O10	177 (1)
Fe1-Fe2-C5	87.5 (4)							

Table IX. Dimensions of the Triphosphine Unit in Metal Carbonyl Complexes

	P-P distances, ^a Å		P				
compound	1-2	1-3	2-3	1-2-3	2-3-1	3-1-2	lit.
$(i-\Pr_2NP)_3Fe_2(CO)_6$	2.534 (2)	2.278 (2)	2.243 (2)	56.56 (6)	68.19 (7)	55.25 (6)	2
$(i-\Pr_2NP)_2P(Cl)[Cr(CO)_5]Fe_2(CO)_6$	2.603 T	2.240 (3)	2.246 (2)		70.94 (8)		4
$(i-\Pr_2NP)_2P[Mn(CO)_5]Fe_2(CO)_6$	2.513 T	2.235 (4)	2.231 (4)		68.5 (1)		4
$t-Bu_3P_3$	2.187 (1)	2.185 (2)	2.213 (2)	59.6 (1)	59.6 (1)	60.8 (1)	17
$t-Bu_3P_3Cr(CO)_5$	2.194 (2)	2.211 (2)	2.191 (2)	60.73 (7)	59.69 (7)	59.58 (7)	20
$i-\Pr_3P_3W(CO)_5$	2.181 (4)	2.188 (3)	2.207 (4)	59.8 T	59.5 T	60.7 T	20
$t-Bu_3P_3Fe_2(CO)_6$	2.499 (6)	2.226 (6)	2.209 (6)	56.0 (2)	68.6 (2)	55.4 (2)	this work
$t-Bu_3P_3[Fe(CO)_4]Fe_2(CO)_6$	2.527 (3)	2.250 (4)	2.242 (3)	55.9 (1)	68.5 (1)	55.6 (1)	this work
$Ph_2P_3[Fe_2(CO)_6(\mu_2 - PPh_2)]Fe_2(CO)_6(VI)^b$	2.558 T	2.245 (2)	2.250 (2)		69.37 (6)		6
	2.528 T	2.247 (2)	2.300 (2)		67.57 (6)		

 ${}^{a}T$ = distance or angle estimated by trigonometry from the reported data rather than taken directly from the cited papers. ^bData are presented for two crystallographically independent molecules of VI in the unit cell.⁶ The numbering of the phosphorus atoms in VI is changed to conform to the number of the other derivatives in Table IX.

Some other reactions of VII were investigated in order to assess the reactivity of the lone pair on P³ of VII. Reaction of pure *t*-Bu₃P₃Fe₂(CO)₆ (VII) with Fe₂(CO)₉ in hexane or tetrahydrofuran at room temperature resulted in some complexation of P³ in VII to give IX as indicated by ³¹P NMR but leading to *t*-Bu₃P₃Fe₂(CO)₆/*t*-Bu₃P₃[Fe(CO)₄]Fe₂(CO)₆ ratios no lower than ~1 indicating some difficulty in this reaction proceeding to completion. Reaction of *t*-Bu₃P₃Fe₂(CO)₆ (VII) with (thf)Cr-(CO)₅ resulted in no evidence (by ³¹P NMR) for any complexation of P³ in VII to an Cr(CO)₅ group. However, reaction of *t*-Bu₃P₃Fe₂(CO)₆ (VII) with hydrogen peroxide and with sulfur led to formation of the corresponding oxide (X: E = O) and sulfide (X: E = S), respectively, as indicated by the ³¹P NMR and elemental analyses.

Discussion

The results described in this paper represent the first reported example of the cleavage of a cyclotriphosphine ring by a metal carbonyl derivative to give a linear triphosphine complex, namely t-Bu₃P₃Fe₂(CO)₆ (VII). The two outer phosphorus atoms in the P₃ chain in VII are each bonded to both metal atoms, whereas the central phosphorus atom remains trivalent and thus has a lone

pair. Studies on the chemical reactivity of this lone pair indicate that it is reactive but only to a limited extent, possibly because of the steric hindrance of the tert-butyl groups. Thus although $t-Bu_3P_3Fe_2(CO)_6$ can readily be converted to the corresponding oxide and sulfide, attempts to complex an Fe(CO)₄ group to the central phosphorus atom (e.g., by reaction with $Fe_2(CO)_9$) do not go to completion and attempts to complex a $Cr(CO)_5$ group to the central phosphorus atom with $(thf)Cr(CO)_5$ were unsuccessful. By comparison our efforts to complex the central phosphorus atom in $(i-Pr_2NP)_3Fe_2(CO)_6$ with metal carbonyl moieties were also unsuccessful apparently because of the steric hindrance of the diisopropylamino group.⁴ However, replacement of the diisopropylamino group on the central phosphorus atom in II (R = *i*- Pr_2N) with the less sterically demanding chlorine atom to give V was found to make the lone pair on the central phosphorus atom more accessible so that IV could be obtained by reaction of V with $(thf)Cr(CO)_5$.⁴ In addition, $Cx_3P_3[Cr(CO)_5]Fe_2(CO)_6$ (III), which is closely related to IV, is reported³ as a product from the reaction of $(CxPCl_2)Fe(CO)_4$ with $Na_2Cr_2(CO)_{10}$.

Acknowledgment. We are indebted to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of the work.

Supplementary Material Available: Listings of positional parameters and their estimated standard deviations, anisotropic displacement factors, bond distances (Å), and bond angles (deg) for t-Bu₃P₃Fe₂(CO)₆ and t-Bu₃P₃[Fe(CO)₄]Fe₂(CO)₆ (Tables S1-S8) and labeled PLUTO diagrams and views of the unit cells for t-Bu₃P₃Fe₂(CO)₆ and t-Bu₃P₃[Fe(CO)₄]-Fe₂(CO)₆ (19 pages); listings of observed and calculated structure factors for t-Bu₃P₃Fe₂(CO)₆ and t-Bu₃P₃[Fe(CO)₄]-Fe₂(CO)₆ (47 pages).